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Abstract

This draft report presents preliminary results for the TREC 2010 ad-
hoc web search task. We ran our MIREX system on 0.5 billion web
documents from the ClueWeb09 crawl. On average, the system retrieves
at least 3 relevant documents on the first result page containing 10 results,
using a simple index consisting of anchor texts, page titles, and spam
removal.

1 Introduction

Information retrieval researchers are supposed to come up with new ideas that
improve search systems. If such ideas are radically new, experimentally testing
might require a non-trivial amount of coding to change existing systems. If for
instance a new idea requires information that is not normally in the index (an-
chor texts, geographical locations, some complex natural language constructs,
parsimonious language modeling probabilities, etc., etc.), then the researcher
has to recode parts of the system’s indexing facilities, and possibly query pro-
cessing facilities that access this information. If the new idea requires query
processing techniques that are not supported by the production system (sliding
windows, phrases, structured query expansion, ontology matching, etc.) even
more work has to be done.

We propose to use Hadoop MapReduce [6] to quickly test new retrieval
approaches on a cluster of machines by sequentially scanning all documents.
The system read each web page one at the time, and on each page we execute
the 50 TREC topics. Sequential scanning allows us to do almost anything we
like: sophisticated natural language processing, sliding windows, etc. If the new
approach is successful, it will have to be implemented in a full blown inverted
file search system, but there is no point in making a new inverted index if the
experiment is unsuccessful. To give the reader an idea of the complexity of
such an experiment: An experiment that needs two sequential scans of the data
requires about 350 lines of code. The experimental code does not need to be
maintained: In fact, it should not be altered anymore to provide data provenance
and reproducibility of research results. Once the experiment is done, the code
is filed in a repository for future reference. We call our code repository MIREX
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(MapReduce Information Retrieval EXperiments), and it is available as open
source software from http://mirex.sourceforge.net

Surprisingly, linear scanning for testing experimental search approaches seems
to be mostly reported in industrial settings. Jeffrey Dean [3] describes how Map-
Reduce [4] is used at Google for experimental evaluations. New ranking ideas
are tested off-line on human rated query sets similar to topics at TREC. Run-
ning such off-line tests has to be easy for the researchers at Google, possibly at
the expense of the efficiency of the prototype. So, it is okay if it takes hours to
run for instance 10,000 queries, as long as the experimental infrastructure al-
lows for fast and easy coding of new approaches. A similar line of reasoning was
followed by Microsoft at TREC 2009: Nick Craswell et al. [2] use DryadLINQ
[7] on a cluster of 240 machines to run their TREC experiments. The work
at Google and Microsoft shows that sequential scanning over large document
collections is a viable approach to experimental information retrieval. Some of
the advantages are [5]: 1) Researchers spend less time on coding and debugging
new experimental retrieval approaches; 2) It is easy to include new information
in the ranking algorithm, even if that information would not normally be in-
cluded in the search engine’s inverted index; 3) Researchers are able to oversee
all or most of the code used in the experiment; 4) Large-scale experiments can
be done in reasonable time.

This draft report presents preliminary results for the TREC 2010 ad-hoc
task. In Section 2 we briefly introduce MIREX, Section 3 presents our experi-
mental results, and Section 4 concludes the paper.

2 MIREX: MapReduce Information Retrieval
Experiments

MapReduce is a framework for batch processing of large data sets on clusters of
commodity machines [4]. Users of the framework specify a mapper function that
processes a key/value pair to generate a set of intermediate key/value pairs, and
a reducer function that processes intermediate values associated with the same
intermediate key. The pseudo code in Figure 1 outlines our sequential search
implementation. The implementation does a single scan of the documents, pro-
cessing all queries in parallel.

The mapper function takes pairs of document identifier and document text
(DocId, DocText). For each pair, it runs all benchmark queries and outputs
for each matching query the query identifier as key, and the pair document
identifier and score as value. In the code, Queries is a global constant per
experiment. The MapReduce framework runs the mappers in parallel on each
machine in the cluster. When the map step finishes, the framework groups
the intermediate output per key, i.e., per QueryId. The reducer function then
simply takes the top 1000 results for each query identifier, and outputs those
as the final result. The reducer function is also applied locally on each machine
(that is, the reducer is also used as a combiner [4]), making sure that at most
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mapper (DocId, DocText) =
FOREACH (QueryID, QueryText) IN Queries
Score = experimental score(QueryText, DocText)
IF (Score > 0)
THEN OUTPUT(QueryId, (DocId, Score))

reducer (QueryId, DocIdScorePairs) =
RankedList = ARRAY[1000]
FOREACH (DocId, Score) IN DocIdScorePairs
IF (NOT filled(RankedList) OR
Score > smallest score(RankedList))

THEN ranked insert(RankedList, (DocId, Score))
FOREACH (DocId, Score) IN RankedList
OUTPUT(QueryId, DocId, Score)

Figure 1: Pseudo code for linear search

1000 results have to be sent between machines after the map phase finishes.
Our experiments are made of several such MapReduce jobs: We extracted

anchor texts from the full ClueWeb09 Category A data, we gathered global
statistics for terms that occur in the TREC topics, and we run linear search as
depicted in Figure 1. As a final step, we removed spam pages using the results
from Gordon Cormack et al. [1]. The experiments were run on a cluster of 15
low cost machines.

3 Experimental results

Table 1 shows the precision at 5, 10 and 20 web pages retrieved for queries 1–50
of TREC 2009. Here, LM no smoothing denotes a language model with a length
prior, that does not use any smoothing such that documents that do not contain
all query terms are assigned zero probability (i.e., they are not retrieved). The
experiment named LM λ = x denotes a language model with length prior and
linear interpolation smoothing, where λ is the weight of the document language
model, so λ = 0.95 uses minimal smoothing, and λ = 0.15 uses quite some
smoothing. The experiment named LM Dirichlet uses Dirichlet smoothing with
µ = 2500, and BM25 is Okapi’s BM25 weighting with k1 = 1.2 and b = 0.75 [5].

Interestingly, on the anchor text representation, the best approach does not
use smoothing, so it does not need global statistics to compute IDF-like (in-
verse document frequency) weights. Global statistics can be incorporated by
doing one initial pass over the corpus to collect global statistics for all queries
[2]. Presumably, on document collections of this scale, IDF-like weighting is
unnecessary.
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Experiment P@5 P@10 P@20
anchors, LM no smoothing 0.372 0.330 0.253
anchors, LM λ = 0.95 0.372 0.328 0.257
anchors, LM λ = 0.15 0.312 0.276 0.233
anchors, LM Dirichlet 0.316 0.282 0.214
anchors, BM25 0.312 0.246 0.200
anchors+titles, λ = 0.95 0.360 0.316 0.251
anchors–spam, LM λ = 0.95 0.416 0.338 0.261
anchors+titles–spam, LM λ = 0.95 0.412 0.332 0.257

Table 1: Precision at 5, 10 and 20 on TREC 2009

We used the spam rankings kindly provided by Cormack et al. [1] – their
fusion results – to remove the spammiest 50% of the web pages, i.e., we effec-
tively removed half of the index. Removing spam pages helps early precision
considerably on TREC 2009, although not as much as reported by Cormack et
al. Searching the document titles in addition to the anchor texts seems to hurt
performance a bit on TREC 2009, however, it improved recall (not shown), and
in combination with spam page removal, the precision figures are almost the
same as searching the anchor texts alone.

Experiment P@5 P@10 P@20
anchors, LM λ = 0.95 (utwente3) 0.306 0.256 0.251
anchors+titles, LM λ = 0.95 (utwente4) 0.311 0.253 0.249
anchors–spam, LM λ = 0.95 (unofficial) 0.317 0.306 0.276
anchors+titles–spam, LM λ = 0.95 (utwente4SF) 0.317 0.308 0.303

Table 2: Precision at 5, 10 and 20 on TREC 2010

Table 2 shows the precision at 5, 10, and 20 documents retrieved of the
official TREC runs. The results are computed over 36 of the 50 topics for which
relevance judgments were available at the time of writing these working notes.
The held back topic numbers are 54, 61, 66, 68, 72, 78, 83, 86, 87, 90, 95, 98, 99,
and 100. The official runs are fully judged until 20 documents retrieved, so all
precision values are actual precision values. Of the unofficial run, the fraction
of judged documents for 5, 10 and 20 documents retrieved was 1.00, 0.99, and
0.95 respectively. On TREC 2010, including the document titles seems to help
a bit, even if spam pages are not removed. The three official runs do not differ
substantially on the 36 topics.
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4 Conclusion

We showed how to use Hadoop MapReduce for large-scale information retrieval
experiments using little effort. We evaluated a web search approach that uses
anchor texts, page titles, and spam detection. If we assume the standard result
page size of 10 results, then the system retrieves more than 3 relevant documents
on average on the first result page. The code used in our experiment is open
source and available to other researchers at: http://mirex.sourceforge.net
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